IoT

Using Internet of Things (IoT) Powered Solutions for Data Collection and Cleaner Air

Image credits: CHUTTERSNAP on Unsplash

We all know about the benefits of cleaner air for our health, lifestyles, and the planet. With emissions increasing globally, improving air monitoring capabilities is becoming even more important for environmental agencies. A part of these improvements lies in having access to data and information about air quality, as it is ultimately these insights that become useful when enacting regulations.

The Air Quality Index (AQI) is the standard for measuring air quality. It includes information about pollutants such as carbon monoxide, sulfur dioxide, nitrogen dioxide, aerosols, and ground level ozone. Air quality sensors measure the quantities of these pollutants present in a particular microclimate. Incorporating the Internet of Things (IoT) into air quality measurement frameworks is becoming common in many places. 

An IoT powered framework comprises multiple sensors, devices, and communication modems connected to a network. Measuring air quality can be time consuming and costly, however. And sometimes, there may be questions about how best to use the data collected. An IoT powered framework makes this process easier, providing you with a series of options that best fit your budget and helping you reduce the manual work required. In this blog, we’ll explain how devices function in an air quality measurement system, how an IoT solution works typically, uses of the data collected, and the benefits of an IoT powered data collection system.

The Data Collection Framework: Device Capabilities

The sensors, devices, and communication modems of such a system will collect data (i.e. air pollutant quantities). You can select from a range of equipment based on your budget – from low cost, lower precision devices to expensive, high precision ones. Each type of device will have different capabilities:

  • Security measures – The market contains different communication modes and protocols with varying security measures, so it is important for you to understand these measures in advance.
  • Data collection methods – Some devices collect and transfer data in real time, while others perform these functions in batches. 
  • Computing functions – Some devices function as “dumb” data collectors and others can detect anomalies, sanitize, and perform automatic calibrations.
  • Power sources – Devices deployed indoors in remote locations can use power directly from an electricity grid. There are also devices that use power from solar panels to charge batteries.

The Role of an IoT Solution

The IoT solution will retrieve the data that your sensors, devices, and communication modems collect. Apart from data retrieval capabilities, the IoT solution will also oversee these functions:

  • Supporting different wire and application-level protocols
  • Identifying degrading, rogue, or malfunctioning equipment
  • Collecting, storing, sanitizing, and enriching sensor readings, plus detecting anomalies
  • Integrating with similar weather-associated APIs and validate the data
  • Facilitating data sharing using industry standard managed API patterns
  • Calculating the AQI value and air quality category

How Can I Use the Data Collected?

We have discovered that the above question is quite a common one. The answer is that there are many applications and integrations that you can explore to create user-friendly data consumption/visibility models and even new revenue streams.

  • Develop different types of data consumption applications for different audiences. Configure the data so that it is visible on dashboards, embedded widgets, or mobile apps for user convenience.
  • Share data with different audiences – Environmental, aviation or military authorities, educational institutions, research bodies, the general public, etc. If you decide to share data in this way, you can also think about a monetization model.

Benefits of an IoT Powered Data Collection System To Determine Air Quality

A robust data collection system, the possession of a rich set of data, and the above mentioned application options are some of the obvious benefits. Some other ways you can benefit from an IoT powered data collection system are:

  • Cost control – As we mentioned earlier, devices have varying costs and precision levels. You can decide what types of devices that you want to use based on your budget and overall objectives for collecting the data.
  • 24/7 data availability – This is especially important to provide up to date AQI information to the public and other organizations; and issue alerts when required. The data will also form the cornerstone of planning air safety regulations.
  • Accessibility – You can use these devices in all environments, in urban and rural areas. It provides you with a mechanism to monitor the air quality in the more remote areas with no personnel being physically present in these areas too.

Once you have an understanding of the devices required for creating a data collection framework, your next step is to work with an IoT solutions provider and select the right technology platform. We built the Entgra IoT Platform with connectivity in mind – it provides you with the application building blocks to integrate all your devices under one platform. The platform addresses key technology needs for a data collection framework, such as extensive integration, data processing, extensible architecture, and data sharing via APIs. Find out how we can help you.

Post-Pandemic Business Revival: Where Are We Headed?

Photo by Alec Favale on Unsplash

The effects of the COVID-19 pandemic continue to loom over us. With hopes of opening countries and returning to normalcy, we take one step forward, only to fall back two, with tightened masks. It surely will be a while before life as we once knew it can be restored.

Thrust with incertitude at all levels from economic subsistence, vocational hardship, healthcare exigencies, and the unpredictability of life in general, our core existential strategy for the last two years has primarily been inclined towards that of basic survival centered around us as individuals, our close-knit families and communities, and the associated temporal assets. The pandemic epiphany has brought about drastic changes in our lifestyles, calling us to revise our priorities with a new reality check in life. 

For business enterprises, this is bad news and has been so for the past two years. 

The Trending Story In Numbers

As with every historical industrial revolution, the effects of the pandemic will shape the economic trends for the future. Unsurprisingly, there will be an evident increase in remote working. A recent Gartner poll found that 48% of employees will likely work remotely at least part of the time after COVID-19 compared to 30% before the pandemic. Similarly, the McKinsey Global Institute estimates that more than 20% of the global workforce could work the majority of its time away from the office – and equally importantly, be just as effective. A consequent HR trend analysis by them indicates that 32% of organizations are replacing full time employees with contingent workers as a cost-saving measure. Prepped up for this, in a recent Gartner poll, 90% of HR leaders said employees would be allowed to work remotely even once COVID-19 vaccines are widely available.

As indicated by these statistics, we have embraced what worked well from the pandemic and are progressing forward retaining the lessons learned. There’s no going back now. Digitally enabled productivity gains have accelerated the Fourth Industrial Revolution powered by technology and defined by operational models that survived above the pandemic predicaments. 

Remote Working or the ability to Work From Anywhere (WFA) is clearly here to stay. So is the hybrid work model as has been discovered in a recent HR trend analysis by Gartner.

Accordingly, the most favorable operational model driving business transformations in the predictable future is that of the Hybrid Work model where employees interact with each other with a mix of distributed, co-located premises synchronously, and/or asynchronously.

Future of Hybrid Working – Gartner

Your employees are now empowered with the choice of how best productivity is accomplished – your job is to ensure they are sufficiently equipped to do so. 

Are We Ready? Fitting Device Strategy for Your Ecosystem

Managing a digital ecosystem of disparate devices on different platforms can be quite a challenge. Even more so are the conundrums involved with the smooth operation of digital systems whilst being caught unawares by the virus. It is therefore imperative that we make the most of what we have for continued existence of operations under the prevailing constraints.

In one of our recent undertakings, we set out to empower public field officers by helping them digitize their routine tasks. Whilst managing to effectively map the skill sets to devices and the appropriate technology during the project, we also analyzed and outlined how the government administrators in Sri Lanka can benefit from a centralized strategy to monitor and manage the devices deployed in the field. 

Ideally, a complete device strategy is woven around the business requirements of the enterprise, its device engagement criteria, product building, operational efficiency, scaling potential, and the extent of available technical support. Value creation from a long-term perspective and sustainability of device deployment with integration are vital aspects to be considered for a productive device strategy. 

With our varied Mobile Device Management (MDM) solutions and Internet of Things (IoT) technologies, Entgra can help you formulate the most fitting strategy for your enterprise. Our recommendations precede a comprehensive analysis of your device specifications, their functionality and configurations, defined ownership and administrative policies, pre-work device check, monitoring and their distribution,  complete with a pilot run on device deployment in the field.  As part of our assistance in managing your ecosystem, we will also help you with App development, identity and access management (IAM) and storage options. 

Resilience and Agility: The Way Forward

Resilience, in enterprise terms, is a measure of your ability to swiftly adapt to disruptions while maintaining continuous business operations and safeguarding your employees, assets, and overall brand equity. Resilient organizations are better able to respond and correct their course quickly with changes. 

Faced with the adversities introduced by the pandemic, enterprises that are actively taking measures to optimally tackle the changes are positioned with a competitive edge to be able to progressively move forward retaining most of their strength in vying to make the most of the situation. 

Building a more responsive organization in terms of infrastructure and operational flow to increase agility and flexibility with room for flexing is therefore of utmost importance. This in turn translates into facilitating seamless workflows and remote working environments against a backdrop of changing and evolving technology usage, both by organizations and individuals. 

Entgra offers you a single platform for device integration with comprehensive endpoint management capabilities where you are able to expose devices as APIs securely with identity federation for managing human and device identities. Enabling custom integrations with broad built-in capabilities, and for developing end-to-end applications, our secure, customizable platform can manage all types of devices and applications. Complete with device and endpoint data analytics for systematic decision making, our IoT platform together with our Enterprise Mobility Management (EMM) solutions will enable you to remain resilient, relevant, and flexible to respond to present and future changes.

Get in touch with us to learn more about how we can help you.

References